
Chapter 1

Lorentz Group and Lorentz
Invariance

In studying Lorentz-invariant wave equations, it is essential that we put our under-
standing of the Lorentz group on firm ground. We first define the Lorentz transfor-
mation as any transformation that keeps the 4-vector inner product invariant, and
proceed to classify such transformations according to the determinant of the transfor-
mation matrix and the sign of the time component. We then introduce the generators
of the Lorentz group by which any Lorentz transformation continuously connected to
the identity can be written in an exponential form. The generators of the Lorentz
group will later play a critical role in finding the transformation property of the Dirac
spinors.

1.1 Lorentz Boost

Throughout this book, we will use a unit system in which the speed of light c is unity.
This may be accomplished for example by taking the unit of time to be one second
and that of length to be 2.99792458× 1010 cm (this number is exact1), or taking the
unit of length to be 1 cm and that of time to be (2.99792458× 1010)−1 second. How
it is accomplished is irrelevant at this point.

Suppose an inertial frame K (space-time coordinates labeled by t, x, y, z) is mov-
ing with velocity β in another inertial frame K ′ (space-time coordinates labeled by
t′, x′, y′, z′) as shown in Figure 1.1. The 3-component velocity of the origin of K

1One cm is defined (1983) such that the speed of light in vacuum is 2.99792458 × 1010 cm per
second, where one second is defined (1967) to be 9192631770 times the frequency of the hyper-fine
splitting of the Cs133 ground state.
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Figure 1.1: The origin of frame K is moving with velocity ~β = (β, 0, 0) in frame K ′,

and the origin of frame K ′ is moving with velocity −~β in frame K. The axes x and
x′ are parallel in both frames, and similarly for y and z axes. A particle has energy
momentum (E, ~P ) in frame K and (E ′, ~P ′) in frame K ′.

measured in the frame K ′, ~β′K , is taken to be in the +x′ direction; namely,

~β′K (velocity of K in K ′) = (β, 0, 0)
def≡ ~β. (1.1)

Assume that, in the frame K ′, the axes x, y, z are parallel to the axes x′, y′, z′. Then,
the velocity of the origin of K ′ in K, ~βK′ , is

~βK′ = −~β′K = (−β, 0, 0) (velocity of K ′ in K). (1.2)

Note that ~β′K (~βK′) is measured with respect to the axes of K ′ (K).

If a particle (or any system) has energy and momentum (E, ~P ) in the frame K,

then the energy and momentum (E ′, ~P ′) of the same particle viewed in the frame K ′

are given by

E ′ =
E + βPx√

1− β2
, P ′y = Py ,

P ′x =
βE + Px√

1− β2
, P ′z = Pz, .

(1.3)

This can be written in a matrix form as(
E ′

P ′x

)
=

(
γ η

η γ

)(
E

Px

)
,

(
P ′y
P ′z

)
=

(
Py
Pz

)
(1.4)

with

γ ≡ 1√
1− β2

, η ≡ βγ =
β√

1− β2
. (1.5)

Note that γ and η are related by

γ2 − η2 = 1 . (1.6)
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Figure 1.2: Starting from the configuration of Figure 1.1, the same rotation is applied
to the axes in each frame. The resulting transformation represents a general Lorentz
boost.

Now start from Figure 1.1 and apply the same rotation to the axes of K and K ′

within each frame (Figure 1.2). Suppose the rotation is represented by a 3×3 matrix

R. Then, the velocity of K ′ in K, ~βK′ , and and the velocity of K in K ′, ~β′K , are
rotated by the same matrix R,

~β′K → R~β′K ,
~βK′ → R~βK′ , (1.7)

and thus we still have
~β′K = −~βK′

def≡ ~β , (1.8)

where we have also redefined the vector ~β which is well-defined in both K and K ′

frames in terms of ~βK′ and ~β′K , respectively. The transformation in this case can

be obtained by noting that, in (1.4), the component of momentum transverse to ~β

does not change and that Px, P
′
x are the components of ~P , ~P ′ along ~β in each frame.

Namely, the tranformation can be written as

(
E ′

P ′‖

)
=

(
γ η

η γ

)(
E

P‖

)
, ~P ′⊥ = ~P⊥ , (1.9)

where ‖ and ⊥ denote components parallel and perpecdicular to ~β, repectively. Note

that ~P ′⊥ and ~P⊥ are 3-component quantities and the relation ~P ′⊥ = ~P⊥ holds compo-
nent by component because we have applied the same roation R in each frame.

The axes of K viewed in the frame K ′ are no longer perpendicular to each other
since they are contracted in the direction of ~β′K . Thus, the axes of K in general
are not parallel to the corresponding axes of K ′ at any time. However, since the
same rotation is applied in each frame, and since components transverse to ~β are the
same in both frames, the corresponding axes of K and K ′ are exactly parallel when
projected onto a plane perpendicular to ~β in either frames. The transformation (1.9)
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is thus correct for the specific relative oprientation of two frames as defined here,
and such transformation is called a Lorentz boost, which is a special case of Lorentz
transformation defined later in this chapter for which the relative orientation of the
two frames is arbitrary.

1.2 4-vectors and the metric tensor gµν

The quantity E2 − ~P 2 is invariant under the Lorentz boost (1.9); namely, it has the
same numerical value in K and K ′:

E ′2 − ~P ′2 = E ′2 − (P ′2‖ + ~P ′2⊥ )

= (γE + ηP‖)
2 −

[
(ηE + γP‖)

2 + ~P 2
⊥
]

= (γ2 − η2)︸ ︷︷ ︸
1

E2 + (η2 − γ2)︸ ︷︷ ︸
−1

P 2
‖ − ~P 2

⊥

= E2 − ~P 2 ,

(1.10)

which is the invariant mass squared m2 of the system. This invariance applies to any
number of particles or any object as long as E and ~P refer to the same object.

The relative minus sign between E2 and ~P 2 above can be treated elegantly as
follows. Define a 4-vector P µ (µ = 0, 1, 2, 3) by

P µ = (P 0, P 1, P 3, P 4)
def≡ (E,Px, Py, Pz) = (E, ~P ) (1.11)

called an energy-momentum 4-vector where the index µ is called the Lorentz index
(or the space-time index). The µ = 0 component of a 4-vector is often called ‘time
component’, and the µ = 1, 2, 3 components ‘space components.’

Define the inner product (or ‘dot’ product) A ·B of two 4-vectors Aµ = (A0, ~A)

and Bµ = (B0, ~B) by

A ·B def≡ A0B0 − ~A · ~B = A0B0 − A1B1 − A2B2 − A3B3 . (1.12)

Then, P 2 ≡ P ·P is nothing but m2:

P 2 = P 02 − ~P 2 = E2 − ~P 2 = m2 (1.13)

which is invariant under Lorentz boost. This inner product P · P is similar to the
norm ~x2 of an ordinary 3-dimensional vector ~x, which is invariant under rotation,
except for the minus signs for the space components in the definition of the inner
product. In order to handle these minus signs conveniently, we define ‘subscripted’
components of a 4-vector by

A0 = A0, Ai = −Ai (i = 1, 2, 3) . (1.14)
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Then the inner product (1.12) can be written as

A ·B = A0B
0 + A1B

1 + A2B
2 + A3B

3 def≡ AµB
µ = AµBµ , (1.15)

where we have used the convention that when a pair of the same index appears in the
same term, then summation over all possible values of the index (µ = 0, 1, 2, 3 in this
case) is implied. In general, we will use Roman letters for space indices (take values
1,2,3) and greek letters for space-time (Lorentz) indices (take values 0,1,2,3). Thus,

xiyi =
3∑
i=1

xiyi (= ~x · ~y), (Aµ +Bµ)Cµ =
3∑

µ=0

(Aµ +Bµ)Cµ , (1.16)

but no sum over µ or ν in

AµB
ν + CµD

ν (µ, ν not in the same term). (1.17)

When a pair of Lorentz indices is summed over, usually one index is subscript and
the other is superscript. Such indices are said to be ‘contracted’. Also, it is important
that there is only one pair of a given index per term. We do not consider implied
summations such as AµBµCµ to be well-defined. [(Aµ + Bµ)Cµ is well-defined since
it is equal to AµCµ +BµCµ.]

Now, define the metric tensor gµν by

g00 = −g11 = −g22 = −g33 = 1, gµν = 0 (µ 6= ν) (1.18)

which is symmetric:
gµν = gνµ . (1.19)

The corresponding matrix G is defined as

{gµν}
def≡

0 1 2 3 = ν

0

1

2

3


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


||

µ

def≡ G (1.20)

When we form a matrix out of a quantity with two indices, by definition we take the
first index to increase downward, and the second to increase to the right.

As defined in (1.14) for a 4-vector, switching an index between superscript and
subscript results in a sign change when the index is 1,2, or 3, while the sign is
unchanged when the index is zero. We adopt the same rule for the indices of gµν . In
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fact, from now on, we enforce the same rule for all space-time indices (unless otherwise
stated, such as for the Kronecker delta below). Then we have

gµν = gµν , gµ
ν = gµν = δµν (1.21)

where δµν is the Kronecker’s delta (δµν = 1 if µ = ν, 0 otherwise) which we define to
have only subscripts. Then, gµν can be used together with contraction to ‘lower’ or
‘raise’ indices:

Aν = gµνA
µ, Aν = gµνAµ (1.22)

which are equivalent to the rule (1.14).
The inner product of 4-vectors A and B (1.12) can also be written in matrix form

as

A ·B = AµgµνB
ν =

(A0 A1 A2 A3)


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



B0

B1

B2

B3

 = ATGB . (1.23)

When we use 4-vectors in matrix form, they are understood to be column vectors
with superscripts, while their transpose are row vectors:

A
def≡


A0

A1

A2

A3

 =


A0

Ax
Ay
Az

 , AT = (A0, A1, A2, A3) (in matrix form). (1.24)

1.3 Lorentz group

The Lorentz boost (1.4) can be written in matrix form as

P ′ = ΛP (1.25)

with

P ′ =


E ′

P ′x
P ′y
P ′z

 , Λ =


γ η 0 0

η γ 0 0

0 0 1 0

0 0 0 1

 , P =


E

Px
Py
Pz

 . (1.26)

In terms of components, this can be written as

P ′µ = Λµ
νP

ν , (1.27)
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where we have defined the components of the matrix Λ by taking the first index to be
superscript and the second to be subscript (still the first index increases downward
and the second index increases to the right):

Λ
def≡ {Λµ

ν} =

0 1 2 3 = ν

0

1

2

3


γ η 0 0

η γ 0 0

0 0 1 0

0 0 0 1


||

µ

(1.28)

For example, Λ0
1 = η and thus Λ01 = −η, etc. The superscript and subscript in

(1.27) were chosen such that the index ν is contracted and that the index µ on both
sides of the equality has consistent position, namely, both are superscript.

We have seen that P 2 = E2 − ~P 2 is invariant under the Lorentz boost given by
(1.4) or (1.9). We will now find the necessary and sufficient condition for a 4 × 4
matrix Λ to leave the inner product of two 4-vectors invariant. Suppose Aµ and Bµ

transform by the same matrix Λ:

A′µ = Λµ
αA

α, B′ν = Λν
βB

β . (1.29)

Then the inner products A′ ·B′ and A ·B can be written using (1.22) as

A′ ·B′ = A′ν︸︷︷︸
gµν A

′µ︸︷︷︸
Λµ

αA
α

B′ν︸︷︷︸
Λν

βB
β

= (gµνΛ
µ
αΛν

β)AαBβ

A ·B = Aβ︸︷︷︸
gαβA

α

Bβ = gαβA
αBβ .

(1.30)

In order for A′ ·B′ = A ·B to hold for any A and B, the coefficients of AαBβ should
be the same term by term (To see this, set Aν = 1 for ν = α and 0 for all else, and
Bν = 1 for ν = β and 0 for all else.):

gµνΛ
µ
αΛν

β = gαβ . (1.31)

On the other hand, if Λ satisfies this condition, the same derivation above can be
traced backward to show that the inner product A ·B defined by (1.12) is invariant.
Thus, (1.31) is the necessary and sufficient condition.
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What does the condition (1.31) tell us about the nature of the matrix Λ? Using
(1.22), we have gµνΛ

µ
α = Λνα, then the condition becomes

ΛναΛν
β = gαβ

raise α on both sides
−→ Λν

αΛν
β = gαβ (= δαβ) . (1.32)

Comparing this with the definition of the inverse transformation Λ−1:

(Λ−1)ανΛ
ν
β = δαβ , (1.33)

we see that the inverse matrix of Λ is obtained by

(Λ−1)αν = Λν
α , (1.34)

which means that one simply has to change the sign of the components for which
only one of the indices is zero (namely, Λ0

i and Λi
0) and then transpose it:

Λ =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

 , −→ Λ−1 =


Λ0

0 −Λ1
0 −Λ2

0 −Λ3
0

−Λ0
1 Λ1

1 Λ2
1 Λ3

1

−Λ0
2 Λ1

2 Λ2
2 Λ3

2

−Λ0
3 Λ1

3 Λ2
3 Λ3

3

 . (1.35)

Thus, the set of matrices that keep the inner product of 4-vectors invariant is made of
matrices that become their own inverse when the signs of components with one time
index are flipped and then transposed. As we will see below, such set of matrices
forms a group, called the Lorentz group, and any such transformation [namely, one
that keeps the 4-vector inner product invariant, or equivalently that satisfies the
condition (1.31)] is defined as a Lorentz transformation.

To show that such set of matrices forms a group, it is convenient to write the
condition (1.31) in matrix form. Noting that when written in terms of components,
we can change the ordering in any way we want, the condition can be written as

Λµ
αgµνΛ

ν
β = gαβ, or ΛTGΛ = G . (1.36)

A set forms a group when for any two elements of the set x1 and x2, a ‘product’
x1x2 can be defined such that

1. (Closure) The product x1x2 also belongs to the set.

2. (Associativity) For any elements x1, x2 and x3, (x1x2)x3 = x1(x2x3).

3. (Identity) There exists an element I in the set that satisfies Ix = xI = x for
any element x.
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4. (Inverse) For any element x, there exists an element x−1 in the set that satisfies
x−1x = xx−1 = I.

In our case at hand, the set is all 4 × 4 matrices that satisfy ΛTGΛ = G, and
we take the ordinary matrix multiplication as the ‘product’ which defines the group.
The proof is straightforward:

1. Suppose Λ1 and Λ2 belong to the set (i.e. ΛT
1GΛ1 = G and ΛT

2GΛ2 = G). Then,

(Λ1Λ2)TG(Λ1Λ2) = ΛT
2 ΛT

1GΛ1︸ ︷︷ ︸
G

Λ2 = ΛT
2GΛ2 = G. (1.37)

Thus, the product Λ1Λ2 also belongs to the set.

2. The matrix multiplication is of course associative: (Λ1Λ2)Λ3 = Λ1(Λ2Λ3).

3. The identity matrix I (Iµν = δµν) belongs to the set (ITGI = G), and satisfies
IΛ = ΛI = Λ for any element.

4. We have already seen that if a 4 × 4 matrix Λ satisfies ΛTGΛ = G, then its
inverse exists as given by (1.34). It is instructive, however, to prove it more
formally. Taking the determinant of ΛTGΛ = G,

det ΛT︸ ︷︷ ︸
det Λ

detG︸ ︷︷ ︸
−1

det Λ = detG︸ ︷︷ ︸
−1

→ (det Λ)2 = 1 , (1.38)

where we have used the property of determinant

det(MN) = detM detN (1.39)

with M and N being square matrices of same rank. Thus, det Λ 6= 0 and
therefore its inverse Λ−1 exists. Also, it belongs to the set: multiplying ΛTGΛ =
G by (Λ−1)T from the left and by Λ−1 from the right,

(Λ−1)TΛT︸ ︷︷ ︸
(ΛΛ−1︸ ︷︷ ︸

I

)T

GΛΛ−1︸ ︷︷ ︸
I

= (Λ−1)TGΛ−1 → (Λ−1)TGΛ−1 = G . (1.40)

This completes the proof that Λ’s that satisfy (1.36) form a group.

Since the inverse of a Lorentz transformation is also a Lorentz transformation, it
should satisfy the condition (1.31)

gαβ = gµν(Λ
−1)

µ

α(Λ−1)
ν

β = gµνΛα
µΛβ

ν → gµνΛα
µΛβ

ν = gαβ , (1.41)
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where we have used the inversion rule (1.34). The formulas (1.31), (1.41), and their
variations are then summarized as follows: on the left hand side of the form g Λ Λ = g,
an index of g (call it µ) is contracted with an index of a Λ and the other index of
g (call it ν) with an index of the other Λ. As long as µ and ν are both first or
both second indices on the Λ’s, and as long as the rest of the indices are the same
(including superscript/subscript) on both sides of the equality, any possible way of
indexing gives a correct formula. Similarly, on the left hand side of the form Λ Λ = g,
an index of a Λ and an index of the other Λ are contracted. As long as the contracted
indices are both first or both second indices on Λ’s, and as long as the rest of the
indices are the same on both sides of the equality, any possible way of indexing gives
a correct formula.

A natural question at this point is whether the Lorentz group defined in this
way is any larger than the set of Lorentz boosts defined by (1.9). The answer is

yes. Clearly, any rotation in the 3-dimensional space keeps ~A · ~B invariant while it
does not change the time components A0 and B0. Thus, it keeps the 4-vector inner
product A ·B = A0B0 − ~A · ~B invariant, and as a result it belongs to the Lorentz
group by definition. On the other hand, the only way the boost (1.9) does not change
the time component is to set β = 0 in which case the transformation is the identity
transformation. Thus, any finite rotation in the 3-dimensional space is not a boost.

Furthermore, the time reversal T and the space inversion P defined by

T
def≡ {T µν}

def≡


−1

1

1

1

 , P
def≡ {P µ

ν}
def≡


1

−1

−1

−1

 (1.42)

satisfy
T TGT = G, P TGP = G , (1.43)

and thus belong to the Lorentz group. Even though the matrix P has the same
numerical form as G, it should be noted that P is a Lorentz transformation but G
is not (it is a metric). The difference is also reflected in the fact that the matrix
P is defined by the first index being superscript and the second subscript (because
it is a Lorentz transformation), while the matrix G is defined by both indices being
subscript (or both superscript).

As we will see later, boosts and rotations can be formed by consecutive infinitesi-
mal transformations starting from identity I (they are ‘continuously connected’ to I),
while T and P cannot (they are ‘disconnected’ from I, or said to be ‘discrete’ trans-
formations). Any product of boosts, rotation, T , and P belongs to the Lorentz group,
and it turns out that they saturate the Lorentz group. Thus, we write symbolically

Lorentz group = boost + rotation + T + P . (1.44)
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Later, we will see that any Lorentz transformation continuously connected to I is a
boost, a rotation, or a combination thereof.

If the origins of the inertial frames K and K ′ touch at t = t′ = 0 and ~x = ~x′ = 0,
the coordinate xµ = (t, ~x) of any event transforms in the same way as P µ:

xµ = Λµ
νx

ν . (1.45)

This can be extended to include space-time translation between the two frames:

xµ = Λµ
νx

ν + aµ , (1.46)

where aµ is a constant 4-vector. The transformation of energy-momentum is not
affected by the space-time translation, and is still given by P ′ = ΛP . Such transfor-
mations that include space-time translation also form a group and called the ‘inho-
mogeneous Lorentz group’ or the ‘Poincaré group’. The group formed by the trans-
formations with aµ = 0 is sometimes called the homogeneous Lorentz group. Unless
otherwise stated, we will deal with the homogeneous Lorentz group; namely without
space-time translation.

1.4 Classification of Lorentz transformations

Up to this point, we have not specified that Lorentz transformations are real (namely,
all the elements are real). In fact, Lorentz transformations as defined by (1.31) in
general can be complex and the complex Lorentz transformations plays an impor-
tant role in a formal proof of an important symmetry theorem called CPT theorem
which states that the laws of physics are invariant under the combination of particle-
antiparticle exchange (C), mirror inversion (P), and time reversal (T) under certain
natural assumptions. In this book, however, we will assume that Lorentz transfor-
mations are real.

As seen in (1.38), all Lorentz transformation satisfy (det Λ)2 = 1, or equivalently,
det Λ = +1 or −1. We define ‘proper’ and ‘improper’ Lorentz transformations as{

det Λ = +1 : proper

det Λ = −1 : improper
. (1.47)

Since det(Λ1Λ2) = det Λ1 det Λ2, the product of two proper transformations or two
improper transformations is proper, while the product of a proper transformation and
a improper transformation is improper.

Next, look at the (α, β) = (0, 0) component of the defining condition gµνΛ
µ
αΛν

β =
gαβ:

gµνΛ
µ

0Λν
0 = g00 = 1 , → (Λ0

0)2 −
3∑
i=1

(Λi
0)2 = 1 (1.48)
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Λ0
0≥1

orthochronous
Λ0

0≤−1

non-orthochronous

det Λ=+1
proper Λ(po) TPΛ(po)

det Λ=−1
improper PΛ(po) TΛ(po)

Table 1.1: Classification of the Lorentz group. Λ(po) is any proper and orthochronous
Lorentz transformation.

or

(Λ0
0)2 = 1 +

3∑
i=1

(Λi
0)2 ≥ 1 , (1.49)

which means Λ0
0 ≥ 1 or Λ0

0 ≤ −1, and this defines the ‘orthochronous’ and ‘non-
orthochronous’ Lorentz transformations:{

Λ0
0 ≥ 1 : orthochronous

Λ0
0 ≤ −1 : non-orthochronous

. (1.50)

It is easy to show that the product of two orthochronous transformations or two non-
orthochronous transformations is orthochronous, and the product of an orthochronous
transformation and a non-orthochronous transformation is non-orthochronous.

From the definitions (1.42) and Iµν = δµν , we have

det I = det(TP ) = +1, detT = detP = −1,

I0
0 = P 0

0 = +1, T 0
0 = (TP )0

0 = −1
(1.51)

Thus, the identity I is proper and orthochronous, P is improper and orthochronous,
T is improper and non-orthochronous, and TP is proper and non-orthochronous. Ac-
cordingly, we can multiply any proper and orthochronous transformations by each of
these to form four sets of transformations of given properness and orthochronousness
as shown in Table 1.1. Any Lorentz transformation is proper or improper (i.e. det Λ =
±1) and orthochronous or non-orthochronous (i.e. |Λ0

0|2 ≥ 1). Since any transforma-
tion that is not proper and orthochronous can be made proper and orthochronous by
multiplying T , P or TP , the four forms of transformations in Table 1.1 saturate the

Lorentz group. For example, if Λ is improper and orthochronous, then PΛ
def≡ Λ(po)

is proper and orthochronous, and Λ can be written as Λ = PPΛ = PΛ(po).
It is straightforward to show that the set of proper transformations and the set

of orthochronous transformations separately form a group, and that proper and or-
thochronous transformations by themselves form a group. Also, the set of proper
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and orthochronous transformations and the set of improper and non-orthochronous
transformations together form a group.

Exercise 1.1 Classification of Lorentz transformations.
(a) Suppose Λ = AB where Λ, A, and B are Lorentz transformations. Prove that
Λ is orthochronous if A and B are both orthochronous or both non-orthochronous,
and that Λ is non-orthochronous if one of A and B is orthochronous and the other is
non-orthochronous.
[hint: Note that we can write Λ0

0 = A0
0B

0
0 + ~a ·~b with ~a ≡ (A0

1, A
0

2, A
0

3) and
~b ≡ (B1

0, B
2

0, B
3

0). Then use |~a ·~b| ≤ |~a||~b|. Also, one can derive ~a2 = A0
0

2 − 1 and
~b2 = B0

0
2 − 1. ]

(b) Show that the following sets of Lorentz transformations each form a group:

1. proper transformations

2. orthochronous transformations

3. proper and orthochronous transformations

4. proper and orthochronous transformations plus improper and non-orthochronous
transformations

As mentioned earlier (and as will be shown later) boosts and rotations are con-
tinuously connected to the identity. Are they then proper and orthochronous? To
show that this is the case, it suffices to prove that an infinitesimal transformation
can change det Λ and Λ0

0 only infinitesimally, since then multiplying an infinitesimal
transformation cannot jump across the gap between det Λ = +1 and det Λ = −1 or
the gap between Λ0

0 ≥ 1 and Λ0
0 ≤ −1.

An infinitesimal transformation is a transformation that is very close to the iden-
tity I and any such transformation λ can be written as

λ = I + dH (1.52)

where d is a small number andH is a 4×4 matrix of order unity meaning the maximum
of the absolute values of its elements is about 1. To be specific, we could define it such
that maxα,β |Hα

β| = 1 and d ≥ 0, which uniquely defines the decomposition above.
We want to show that for any Lorentz transformation Λ, multiplying I + dH changes
the determinant or the (0, 0) component only infinitesimally; namely, the differences
vanish as we take d to zero.

The determinant of a n× n matrix A is defined by

detA
def≡

∑
permutations

si1,i2,...inAi11Ai22 . . . Ainn (1.53)
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where the sum is taken over (i1, i2, . . . in) which is any permutation of (1, 2, . . . n),
and si1,i2,...in is 1(−1) if (i1, i2, . . . in) is an even(odd) permutation. When applied to
4× 4 Lorentz transformations, this can be written as

detA
def≡ εαβγδA

α
0A

β
1A

γ
2A

δ
3 , (1.54)

where the implicit sum is over α, β, γ, δ = 0, 1, 2, 3 and εαβγδ is the totally anti-
symmetric 4-th rank tensor defined by

εαβγδ
def≡


=

{
+1

−1

}
if (αβγδ) is an

{
even

odd

}
permutation of (0, 1, 2, 3)

= 0 if any of αβγδ are equal

(1.55)

The standard superscript/subscript rule applies to the indices of εαβγδ; namely, ε0123 =
−ε0123 = 1, etc. Then, it is easy to show that

det(I + dH) = 1 + dTrH + (higher orders in d) , (1.56)

where the ‘trace’ of a matrix A is defined as the sum of the diagonal elements:

TrA
def≡

3∑
α=0

Aαα . (1.57)

Exercise 1.2 Determinant and trace.
Determinant of a n× n matrix is defined by

detA
def≡ si1i2,...inAi11Ai22 . . . Ainn

where sum over i1, i2 . . . in is implied (each taking values 1 through n ) and s(i1, i2 . . . in)
is the totally asymmetric n-th rank tensor:

si1i2...in ≡
{

+1(−1) if (i1, i2 . . . in) is an even (odd ) permutation of (1, 2, . . . n).

0 if any of i1, i2 . . . in are equal.

Show that to first order of a small number d, the determinant of a matrix that is
infinitesimally close to the identity matrix I is given by

det(I + dH) = 1 + dTrH + (higher orders in d) ,

where H is a certain matrix whose size is of order 1, and the trace (Tr) of a matrix
is defined by

TrH ≡
n∑
i=1

Hii .
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Since all diagonal elements of H are of order unity or smaller, (1.56) tells us that
detλ → 1 as we take d → 0. In fact, the infinitesimal transformation λ is a Lorentz
transformation, so we know that detλ = ±1. Thus, we see that the determinant of an
infinitesimal transformation is strictly +1. It then follows from det(λΛ) = detλ det Λ
that multiplying an infinitesimal transformation λ to any transformation Λ does not
change the determinant of the transformation.

The (0, 0) component of λΛ is

(λΛ)0
0 = [(I + dH)Λ]00 = [Λ + dHΛ]00 = Λ0

0 + d (HΛ)0
0 . (1.58)

Since (HΛ)0
0 is a finite number for a finite Λ, the change in the (0, 0) component tends

to zero as we take d → 0. Thus, no matter how many infinitesimal transformations
are multiplied to Λ, the (0, 0) component cannot jump across the gap between +1
and −1.

Thus, continuously connected Lorentz transformations have the same ‘properness’
and ‘orthochronousness. Therefore, boosts and rotations, which are continuously con-
nected to the identity, are proper and orthochronous.

Do Lorentz boosts form a group?
A natural question is whether Lorentz boosts form a group by themselves. The answer
is no, and this is because two consecutive boosts in different directions turn out to
be a boost plus a rotation as we will see when we study the generators of the Lorentz
group. Thus, boosts and rotations have to be combined to form a group. On the
other hand, rotations form a group by themselves.

1.5 Tensors

Suppose Aµ and Bµ are 4-vectors. Each is a set of 4 numbers that transform under
a Lorentz transformation Λ as

A′µ = Λµ
αA

α, B′ν = Λν
βB

β . (1.59)

Then, the set of 16 numbers AµBν (µ, ν = 0, 1, 2, 3) transforms as

A′µB′ν = Λµ
αΛν

βA
αBβ . (1.60)

Anything that has 2 Lorentz indices, which is a set of 16 numbers, and transforms as

( )′µν = Λµ
αΛν

β( )αβ (1.61)

is called a second rank tensor (or simply a ‘tensor’). It may be real, complex, or even
a set of operators. Similarly, a quantity that has 3 indices and transforms as

( )′µνσ = Λµ
αΛν

βΛσ
γ( )αβγ (1.62)
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is called a third-rank tensor, and so on. A 4-vector (or simply a ‘vector’) is a first-
rank tensor. A Lorentz-invariant quantity, sometimes called a ‘scalar’, has no Lorentz
index, and thus it is a zero-th rank tensor:

( )′ = ( ) (scalar) . (1.63)

Contracted indices do not count in deciding the rank of a tensor. For example,

AµBµ : (scalar), AµT
µν : (vector), F µνGµσ : (tensor), etc. (1.64)

The metrix gµν has two Lorentz indices and thus can be considered a second-rank
tensor (thus, the metric tensor), then it should transform as

g′µν = Λµ
αΛν

βg
αβ = gµν (1.65)

where the second equality is due to (1.31). Namely, the metric tensor is invariant
under Lorentz transformations.

In order for some equation to be Lorentz-invariant, the Lorentz indices have to be
the same on both sides of the equality, including the superscript/subscript distinction.
By ‘Lorentz-invariant’, we mean that if an equation holds in one frame, then it holds
in any other frame after all the quantities that appear in the equation are evaluated
in the new frame. In the literature, such equations are sometimes called Lorentz
covariant: both sides of the equality change values but the form stays the same. For
example, if an equation Aµν = Bµν (which is actually a set of 16 equations) holds in
a frame, then it also holds in any other frame:

A′µν = Λµ
αΛν

βA
αβ = Λµ

αΛν
βB

αβ = B′µν . (1.66)

Thus, equations such as
m2 = P µPµ ,

P µ = Aµ +Bµ ,

F µν = AµBν

(1.67)

are all Lorentz-invariant, assuming of course that the quantities transform in the
well-defined ways as described above.

1.6 Fields (classical)

A field is a quantity that is a function of space-time point xµ = (t, ~x) (or ‘event’).
A scalar quantity that is a function of space time is called a scalar field, a vector
quantity that is a function of space time is called a vector field, etc. The rank of
a field and the Lorentz transformation properties (scalar, vector, tensor, etc.) are
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defined in the same way as before, provided that the quantities are evaluated at the
same event point before and after a Lorentz transformation; namely,

Scalar field : φ′(x′) = φ(x)

Vector field : A′µ(x′) = Λµ
αA

α

Tensor field : T ′µν(x′) = Λµ
αΛν

βT
αβ(x)

(1.68)

where x′ and x are related by
x′µ = Λµ

αx
α . (1.69)

For example, a vector field associates a set of 4 numbers Aµ(x) to an event point
x, say when an ant sneezes. In another frame, there are a set of 4 numbers A′µ(x′)
associated with the same event x′, namely, when the ant sneezes in that frame, and
they are related to the 4 numbers Aµ(x) in the original frame by the matrix Λ. The
functional shape of a primed field is in general different from that of the corresponding
unprimed field. Namely, if one plots φ(x) as a function of x and φ′(x′) as a function
of x′, they will look different.

When a quantity is a function of x, we naturally encounter space-time derivatives
of such quantity. Then a question arises as to how they transform under a Lorentz
transformation. Take a scalar field f(x), and form a set of 4 numbers (fields) by
taking space-time derivatives:

∂f

∂xµ
(x) =

(
∂f

∂x0
(x),

∂f

∂x1
(x),

∂f

∂x2
(x),

∂f

∂x3
(x)

)

=

(
∂f

∂t
(x),

∂f

∂x
(x),

∂f

∂y
(x),

∂f

∂z
(x)

)
.

(1.70)

Then pick two space-time points x1 and x2 which are close in space and in time. The
argument below is based on the observation that the difference between the values
of the scalar field at the two event points is the same in any frame. Since f(x) is
a scalar field, the values at a given event is the same before and after a Lorentz
transformation:

f ′(x′1) = f(x1), f ′(x′2) = f(x2) , (1.71)

or
f ′(x′1)− f ′(x′2) = f(x1)− f(x2) . (1.72)

Since x1 and x2 are close, this can be written as

dx′µ
∂f ′

∂x′µ
(x′1) = dxµ

∂f

∂xµ
(x1) , (1.73)

where summation over µ is implied, and

dx′µ
def≡ x′µ1 − x′µ2 , dxµ

def≡ xµ1 − xµ2 . (1.74)
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which tells us that the quantity dxµ(∂f/∂xµ) is Lorentz-invariant. Since dxµ = xµ1−xµ2
is a superscripted 4-vector, it follows that ∂f/∂xµ should transform as a subscripted
4-vector (which transforms as Aµ = Λµ

αAα):

∂f ′

∂x′µ
(x′) = Λµ

α ∂f

∂xα
(x) . (1.75)

In fact, together with dx′µ = Λµ
βdx

β, we have

dx′µ
∂f ′

∂x′µ
(x′) =

(
Λµ

βdx
β
)(

Λµ
α ∂f

∂xα
(x)

)

= Λµ
αΛµ

β︸ ︷︷ ︸
gαβ by (1.32)

dxβ
∂f

∂xα
(x)

= dxα
∂f

∂xα
(x) ,

(1.76)

showing that it is indeed Lorentz-invariant.
Thus, the index µ in the differential operator ∂/∂xµ acts as a subscript even

though it is a superscript on x. To make this point clear, ∂/∂xµ is often written using
a subscript as

∂µ
def≡ ∂

∂xµ
=

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
∂

∂t
, ~∇
)
. (1.77)

Once ∂µ is defined, the standard subscript/superscript rule applies; namely, ∂µ =
∂/∂xµ, etc. Symbolically, the operator ∂µ then transforms as a superscripted 4-vector:

∂′µ = Λµ
ν∂

ν , (1.78)

with ∂′µ ≡ ∂/∂x′µ.

Example: Consider the 4-component charge current density jµ(x) = (ρ(x),~j(x)).
We can see that this is indeed a Lorentz 4-vector as follows: Suppose the charge is
carried by some medium, such as gas of ions, then pick a space-time point x and let
ρ0 be the charge density in the rest frame of the medium and ~β be the velocity of the
medium at that point. Then the charge density ρ in the frame in question is larger
than ρ0 by the factor γ = 1/

√
1− β2 due to Lorentz contraction

ρ = ρ0γ . (1.79)

Since ~j = ρ~β, jµ can be written as

jµ = (ρ,~j) = (ρ0γ, ρ0γ~β) = ρ0(γ, ~η) = ρ0η
µ , (1.80)
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where we have defined the ‘4-velocity’ ηµ by

ηµ
def≡ (γ, γ~β) . (1.81)

On the other hand, the 4-momentum of a particle with mass m can be written as

P µ = (mγ,mγ~β) = mηµ (1.82)

which means that the 4-velocity ηµ is a Lorentz 4-vector, and therefore so is jµ. When
the charge is carried by more than one different media, unique rest frame of the media
where ρ0 is defined does not exist. The total jµ, however, is the sum of jµ for each
medium. Since jµ for each medium is a 4-vector, the sum is also a 4-vector.

Then ∂µj
µ = 0 is a Lorentz-invariant equation; namely, if it is true in one frame,

then it is true in any frame. Using (1.77), we can write ∂µj
µ = 0 as

∂µj
µ = ∂0j

0 + ∂1j
1 + ∂2j

2 + ∂3j
3

=
∂

∂t
ρ+

∂

∂x
jx +

∂

∂y
jy +

∂

∂z
jz

=
∂

∂t
ρ +
↑

note the sign!

~∇ ·~j = 0 ,

(1.83)

which is nothing but the charge conservation equation. Thus, we see that if charge is
conserved in one frame it is conserved in any frame.

1.7 Generators of the Lorentz group

In this section, we will focus on the proper and orthochronous Lorentz group. Other
elements of the Lorentz group can be obtained by multiplying T , P , and TP to the
elements of this group. The goal is to show that any element Λ that is continuously
connected to the identity can be written as2

Λ = eξiKi+θiLi , (i = 1, 2, 3) (1.84)

where ξi and θi are real numbers and Ki and Li are 4×4 matrices. Such group whose
elements can be parametrized by a set of continuous real numbers (in our case they

2In the literature, it is often defined as exp i(ξiKi + θiLi), which would make the operators
hermitian if the transformation were unitary (e.g. representations of the Lorentz group in the
Hilbert space). The Lorentz transformation matrices in space-time are in general not unitary, and
for now, we will define without the ‘i’ so that the expressions become simpler.
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are ξi and θi) is called a Lie group. The operators Ki and Li are called the generators
of the Lie group.

Any element of the proper and orthochronous Lorentz group is continuously con-
nected to the identity. Actually we have not proven this, but we will at least show
that all boosts, rotations and combinations thereof are continuously connected to the
identity (and vice versa).

1.7.1 Infinitesimal transformations

Let’s start by looking at a Lorentz transformation which is infinitesimally close to the
identity:

Λµ
ν = gµν + ωµν (1.85)

where ωµν is a set of small (real) numbers. Inserting this to the defining condition
(1.31) or equivalently ΛναΛν

β = gαβ (1.32), we get

gαβ = ΛναΛν
β

= (gνα + ωνα)(gνβ + ωνβ)

= gναg
ν
β + ωναg

ν
β + gναω

ν
β + ωναω

ν
β

= gαβ + ωβα + ωαβ + ωναω
ν
β .

(1.86)

Keeping terms to the first order in ω, we then obtain

ωβα = −ωαβ . (1.87)

Namely, ωαβ is anti-symmetric (which is true when the indices are both subscript or
both superscript; in fact, ωαβ is not anti-symmetric under α↔ β), and thus it has 6
independent parameters:

{ωαβ} =

β −→

α

↓


0 ω01 ω02 ω03

−ω01 0 ω12 ω13

−ω02 −ω12 0 ω23

−ω03 −ω13 −ω23 0


(1.88)

This can be conveniently parametrized using 6 anti-symmetric matrices as

{ωαβ} = ω01{(M01)αβ}+ ω02{(M02)αβ}+ ω03{(M03)αβ}
+ ω23{(M23)αβ}+ ω13{(M13)αβ}+ ω12{(M12)αβ} (1.89)

=
∑
µ<ν

ωµν{(Mµν)αβ}
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with

{(M01)αβ} =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , {(M23)αβ} =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 ,

{(M02)αβ} =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , {(M13)αβ} =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 ,

{(M03)αβ} =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

 , {(M12)αβ} =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0



(1.90)

Note that for a given pair of µ and ν, {(Mµν)αβ} is a 4× 4 matrix, while ωµν is a real
number. The elements (Mµν)αβ can be written in a concise form as follows: first, we
note that in the upper right half of each matrix (i.e. for α < β), the element with
(α, β) = (µ, ν) is 1 and all else are zero, which can be written as gµα g

ν
β. For the

lower half, all we have to do is to flip α and β and add a minus sign. Combining the
two halves, we get

(Mµν)αβ = gµα g
ν
β − gµβ gνα . (1.91)

This is defined only for µ < ν so far. For µ > ν, we will use this same expression as
the definition; then, (Mµν)αβ is anti-symmetric with respect to (µ↔ ν):

(Mµν)αβ = −(M νµ)αβ , (1.92)

which also means (Mµν)αβ = 0 if µ = ν. Together with ωµν = −ωνµ, (1.89) becomes

ωαβ =
∑
µ<ν

ωµν(M
µν)αβ =

∑
µ>ν

ωµν(M
µν)αβ =

1

2
ωµν(M

µν)αβ , (1.93)

where in the last expression, sum over all values of µ and ν is implied. The infinites-
imal transformation (1.85) can then be written as

Λα
β = gαβ +

1

2
ωµν(M

µν)αβ , (1.94)

or in matrix form,

Λ = I +
1

2
ωµνM

µν . (1.95)
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where the first indices of Mµν , which is a 4 × 4 matrix for given µ and ν, is taken
to be superscript and the second subscript; namely, in the same way as Lorentz
transformation. Namely, when no explicit indexes for elements are given, the 4 × 4
matrix Mµν is defined as

Mµν def≡ {(Mµν)αβ} . (1.96)

It is convenient to divide the six matrices to two groups as

Ki
def≡ M0i, Li

def≡ M jk (i, j, k : cyclic) . (1.97)

We always use subscripts for Ki and Li since only possible values are i = 1, 2, 3, and
similarly to Mµν , elements of the matrices Ki’s and Li’s are defined by taking the
first Lorentz index to be superscript and the second subscript:

Ki
def≡ {(Ki)

α
β} , Li

def≡ {(Li)αβ} . (1.98)

Later, we will see that K’s generate boosts and L’s generate rotations. Explicitly,
they can be obtained by raising the index α in (1.90) (note also the the minus sign
in L2 = −M13):

K1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , K2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , K3 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 (1.99)

L1 =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , L2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , L3 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 (1.100)

By inspection, we see that the elements of K’s and L’s can be written as

(Ki)
j
k = 0 , (Ki)

0
µ = (Ki)

µ
0 = giµ ,

(Li)
j
k = −εijk , (Li)

0
µ = (Li)

µ
0 = 0 ,

(i, j, k = 1, 2, 3; µ = 0, 1, 2, 3) (1.101)

where εijk is a totally anti-symmetric quantity defined for i, j, k = 1, 2, 3:

εijk
def≡


=

{
+1

−1

}
if (i, j, k) is an

{
even

odd

}
permutation of (1, 2, 3),

= 0 if any of i, j, k are equal.

(1.102)
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An explicit calculation shows that K’s and L’s satisfy the following commutation
relations:

[Ki, Kj] = −εijkLk
[Li , Lj ] = εijkLk (1.103)

[Li , Kj] = εijkKk ,

where sum over k = 1, 2, 3 is implied, and the commutator of two operators A,B is
defined as

[A,B]
def≡ AB −BA . (1.104)

Note that the relation [Ki, Kj] = −εijkLk can also be written as [Ki, Kj] = −Lk
(i, j, k: cyclic), etc.

Exercise 1.3 Verify the commutation relations (1.103 ). You may numerically verify
them, or you may try proving generally by using the general formula for the elements
of the matrixes.

Exercise 1.4 Boost in a general direction.
Start from the formula for boost (1.9 ) where P‖ is the component of ~P parallel to ~β,

and ~P⊥ is the component perpendicular to ~β; namely,

P‖ = ~P ·~n, and ~P⊥ = ~P − P‖~n
with ~n = ~β/β (and similarly for ~P ′ ). Note that ~β is well-defined in the primed frame
also by the particular relative orientation of the two frames chosen.
(a) Show that the corresponding Lorentz transformation matrix is given by

Λ =


γ γβx γβy γβz
γβx 1 + ρβ2

x ρβxβy ρβxβz
γβy ρβxβy 1 + ρβ2

y ρβyβz
γβz ρβxβz ρβyβz 1 + ρβ2

z

 , with ρ ≡ γ − 1

β2
.

(b) Show that when β is small, the Lorentz transformation matrix for a boost is given
to the first order in β by

Λ = 1 + βiKi . (summed over i = 1, 2, 3)

(c) In the explicit expression of Λ given above, one notes that the top row [Λ0
µ (µ =

0, 1, 2, 3)] and the left-most column [Λµ
0 (µ = 0, 1, 2, 3)] are nothing but the velocity

4-vector ηµ = (γ, ~βγ). Let’s see how it works for general Lorentz transformations
(proper and orthochronous). Suppose the relative orientation of the two frames K

and K ′ is not given by ~β′K = −~βK′, where ~β′K is the velocity of the origin of K

measured in K ′, and ~βK′ is the velocity of the origin of K ′ measured in K. Let Λ be
the corresponding Lorentz transformation. Express Λ0

µ and Λµ
0 in terms of ~β′K and

~βK′. (hint: Place a mass m at the origin of K and view it from K ′, and place a mass
at the origin of K ′ and view it from K.)
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1.7.2 Finite transformations

Now we will show that any finite (namely, not infinitesimal) rotation can be written as
eθiLi , and any finite boost can be written as eξiKi , where θi and ξi (i = 1, 2, 3) are some
finite real numbers. First, however, let us review some mathematical background:

Matrix exponentiations
The exponential of a m×m matrix A is also a m×m matrix defined by

eA
def≡ lim

n→∞

(
I +

A

n

)n
, (1.105)

which can be expanded on the right hand side as

eA = lim
n→∞

n∑
k=0

n(n− 1) . . . (n− k + 1)

k !

Ak

nk
. (1.106)

Since the sum is a rapidly converging series, one can sum only the terms with k ¿ n
for which n(n− 1) . . . (n− k + 1) ≈ nk. It then leads to

eA =
∞∑
k=0

Ak

k !
, (1.107)

which can also be regarded as a definition of eA.
Using the definition (1.105) or (1.107), we see that

(
eA
)†

= eA
†
, (1.108)

where the hermitian conjugate of a matrix A is defined by (A†)ij ≡ A∗ji. The deter-
minant of eA can be written using (1.105) as

det eA = lim
n→∞

[
det

(
I +

A

n

)]n
= lim

n→∞

(
1 +

TrA

n
+ . . .+

ck
nk

+ . . .
)n

,

(1.109)

where we have used (1.56). This does not depend on ck (k > 1) since the derivative
with respect to ck vanishes as can be readily verified. Thus, ck (k > 1) can be set to
zero and we have

det eA = eTrA . (1.110)
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The derivative of exA (x is a number, while A is a constant matrix) with respect to x
can be obtained using (1.107),

d

dx
exA =

∞∑
k=1

(k xk−1)Ak

k !
= A

∞∑
k=1

xk−1Ak−1

(k − 1) !
; (1.111)

thus,

d

dx
exA = AexA . (1.112)

There is an important theorem that expresses a product of two exponentials in
terms of single exponential, called the Campbell-Baker-Hausdorff (CBH) theorem
(presented here without proof):

eAeB = eA+B+ 1
2

[A,B]+ ··· , (1.113)

where ‘· · ·’ denotes the higher-order commutators of A and B such as [A, [A,B]],
[A, [[A,B], B]] etc. with known coefficients. Note that the innermost commutator is
always [A,B] since otherwise it is zero ([A,A] = [B,B] = 0), and thus if [A,B] is a
commuting quantity (a c-number), then ‘· · ·’ is zero. Applying (1.113) to B = −A,
we get

eAe−A = eA−A = I , (1.114)

or
(eA)−1 = e−A . (1.115)

Rotation
An infinitesimal rotation around the z-axis by δθ [Figure 1.3(a)] can be written as(

x′

y′

)
=
(
x− δθy
y + δθx

)
=
(

1 −δθ
δθ 1

)(
x
y

)
= (I + δθLz)

(
x
y

)
, (1.116)

with

Lz =

(x y

x 0 −1
y 1 0

)
. (1.117)

Then, a rotation by a finite angle θ is constructed as n consecutive rotations by θ/n
each and taking the limit n→∞. Using (1.116), it can be written as(

x′

y′

)
= lim

n→∞

(
I +

θ

n
Lz

)n (
x
y

)

= eθLz
(
x
y

)
, (1.118)
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where we have used the definition (1.105).
From the explicit expression of Lz (1.117), we have L2

z = −I, L3
z = −Lz, L4

z = I,
etc. In general,

L4n
z = I, L4n+1

z = Lz, L4n+2
z = −I, L4n+3

z = −Lz, (1.119)

where n is an integer. Using the second definition of eA (1.107), the rotation matrix
eθLz can then be written in terms of the trigonometirc functions as

eθLz = I + θLz +
θ2

2 !
L2
z︸︷︷︸
−I

+
θ3

3 !
L3
z︸︷︷︸

−Lz
+ . . . (1.120)

=

(
1− θ2

2 !
+ . . .

)
︸ ︷︷ ︸

cos θ

I +

(
θ − θ3

3 !
+ . . .

)
︸ ︷︷ ︸

sin θ

Lz (1.121)

=
(

cos θ − sin θ
sin θ cos θ

)
, (1.122)

which is probably a more familiar form of a rotation around the z-axis by an angle θ.
Similarly, rotations around x and y axes are generated by Lx and Ly as obtained

by cyclic permutations of (x, y, z) in the derivation above. Switching to numerical
indices [(Lx, Ly, Lz) ≡ (L1, L2, L3)],

L1 =

( 2 3

2 0 −1
3 1 0

)
, L2 =

( 3 1

3 0 −1
1 1 0

)
, L3 =

( 1 2

1 0 −1
2 1 0

)
. (1.123)

Are these identical to the definition (1.100) which was given in 4 × 4 matrix form,
or equivalently (1.101)? Since δθLi is the change of coordinates by the rotation, the

x

θ
θ
n

θ
n xx

θ

δθ
(x,y)

(x',y')

x

y

δθ

δθx

y

(a) (b)

Figure 1.3: Infinitesimal rotation around the z-axis by an angle δθ (a), and around a

general direction ~θ by an angle θ/n (b).
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elements of a 4 × 4 matrix corresponding to unchanged coordinates should be zero.
We then see that the L’s given above are indeed identical to (1.100).

A general rotation is then given by

eθiLi = e
~θ·~L , (1.124)

where
~θ

def≡ (θ1, θ2, θ3), ~L
def≡ (L1, L2, L3) . (1.125)

As we will see below, this is a rotation around the direction ~θ by an angle θ ≡ |~θ|. To
see this, first we write eθiLi using the definition (1.105):

eθiLi = lim
n→∞

(
I +

θiLi
n

)n
, (1.126)

which shows that it is a series of small rotations each given by I + θiLi/n. The
action of such an infinitesimal transformation [Figure 1.3(b)] on ~x is (writing the
space components only)

x′j =

(
I +

θiLi
n

)
j

k
xk

= gjkx
k +

1

n
θi (Li)

j
k︸ ︷︷ ︸

−εijk by (1.101)

xk

= xj − 1

n
εijk θix

k

= xj +
1

n
(~θ × ~x)j (1.127)

where we have used the definition of the three-dimensional cross product

(~a×~b)i = εijk ajbk . (1.128)

Thus, I+θiLi/n is nothing but a small rotation around ~θ by an angle θ/n (Figure 1.3).
Then n such rotations applied successively will result in a rotation by an angle θ
around the same axis ~θ.

Boosts
A boost in x direction by a velocity β is given by (1.26):

Λ =

( t x

t γ η
x η γ

)
,

(
γ =

1√
1− β2

, η = βγ

)
. (1.129)
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When β is small (= δ), γ ≈ 1 and η ≈ δ to the first order in δ; then, the infinitesimal
boost can be written as

Λ =
(

1 δ
δ 1

)
= I + δKx , (1.130)

with

Kx =

( t x

t 0 1
x 1 0

)
. (1.131)

Suppose we apply n such boosts consecutively, where we take n to infinity while nδ
is fixed to a certain value ξ:

nδ = ξ . (1.132)

Then the resulting transformation is

Λ = lim
n→∞

(
I +

ξ

n
Kx

)n
= eξKx , (1.133)

where we have used the definition (1.105). Is ξ the velocity of this boost? The answer
is no, even though it is a function of the velocity. Let’s expand the exponential above
by the second definition (1.105) and use K2

x = I:

Λ = eξKx (1.134)

= I + ξKx +
ξ2

2 !
K2
x︸︷︷︸
I

+
ξ3

3 !
K3
x︸︷︷︸

Kx

+ . . .

=

(
1 +

ξ2

2 !
+ . . .

)
︸ ︷︷ ︸

cosh ξ

I +

(
ξ +

ξ2

2 !
+ . . .

)
︸ ︷︷ ︸

sinh ξ

Kx

=
(

cosh ξ sinh ξ
sinh ξ cosh ξ

)
. (1.135)

Comparing with (1.130), we see that this is a boost of a velocity β given by

γ = cosh ξ, η = sinh ξ (1.136)

or
β =

η

γ
= tanh ξ . (1.137)

Note that the relation γ2 − η2 = 1 (1.6) is automatically satisfied since cosh ξ2 −
sinh ξ2 = 1.

Thus, n consecutive boosts by a velocity ξ/n each did not result in a boost of a
velocity ξ; rather, it was a boost of a velocity β = tanh ξ. This breakdown of the
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simple addition rule of velocity is well known: the relativistic rule of velocity addition
states that two consecutive boosts, by β1 and by β2, do not result in a boost of β1+β2,
but in a boost of a velocity β0 given by

β0 =
β1 + β2

1 + β1β2

. (1.138)

Due to the identity tanh(ξ1 + ξ2) = (tanh ξ1 + tanh ξ1)/(1 + tanh ξ1 tanh ξ2), however,
it becomes additive when velocities are transformed by βi = tanh ξi (i = 0, 1, 2);
namely, ξ0 = ξ1 + ξ2 holds.

The matrix Kx(≡ K1) given in (1.131) is identical to the 4×4 form given in (1.99)
when all other elements that correspond to unchanged coordinates are set to zero.
The boosts along y and z directions are obtained by simply replacing x with y or z
in the derivation above. Thus, we see that K2 and K3 given in (1.99) indeed generate
boosts in y and z directions, respectively.

A boost in a general direction would then be given by

Λ = eξiKi , (1.139)

where ~ξ ≡ (ξ1, ξ2, ξ3) are the parameters of the boost. In order to see what kind of
transformation this represents, let’s write it as a series of infinitesimal transformations
using (1.105):

eξiKi = lim
n→∞

(
I +

ξi
n
Ki

)n
. (1.140)

From the explicit forms of Ki (1.99), we can write the infinitesimal transformation as

I +
ξi
n
Ki = I +

1

n


0 ξ1 ξ2 ξ3

ξ1

ξ2

ξ3

0

 . (1.141)

On the other hand, a boost in a general direction by a small velocity ~δ is given by
(1.9) with γ ≈ 1, η ≈ δ and δ ≡ |~δ|:

(
E ′

P ′‖

)
=

(
1 δ

δ 1

)(
E

P‖

)
, ~P ′⊥ = ~P⊥ , (1.142)

or 
E ′ = E + δP‖ → E ′ = E + ~δ · ~P
P ′‖ = P‖ + δE
~P ′⊥ = ~P⊥

}
→ ~P ′ = ~P + E ~δ

(1.143)
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where we have used ~P (′) = P
(′)
‖ δ̂+ ~P

(′)
⊥ (δ̂ ≡ ~δ/δ). This can be written in 4× 4 matrix

form as 
E ′

P ′x
P ′y
P ′z

 =

I +


0 δ1 δ2 δ3

δ1

δ2

δ3

0




E
Px
Py
Pz

 . (1.144)

Comparing this with (1.141), we can identify that I+ξiKi/n as a boost in ~ξ direction

by a velocity ξ/n (ξ ≡ |~ξ|). Then n consecutive such boosts will result in a boost
in the same direction. Since the rule of addition of velocity (1.138) is valid in any
direction as long as the boosts are in the same direction, the n boosts by velocity
ξ/n each will result in a single boost of velocity β = tanh ξ as before. Thus, eξiKi

represents a boost in ~ξ direction by a velocity β = tanh ξ.

Boost + rotation
First, we show that a rotation followed by a rotation is a rotation, but a boost followed
by a boost is not in general a boost. Consider a rotation eθiLi followed by another
rotation eφiLi where ~θ and ~φ are arbitrary vectors. Using the CBH theorem (1.113),
we can write the product of the two transformations as

eφiLieθjLj = eφiLi+θjLj+
1
2

[φiLi,θjLj ] + ..., (1.145)

where ‘. . . ’ represents terms with higher-order commutators such as [φiLi, [φjLj, θkLk]]
etc. Now we can use the commutation relations (1.103) to remove all commutators
in the exponent on the right hand side. The result will be a linear combination of L’s
with well-defined coefficients (call them αi) since the coefficients in ‘. . . ’ in the CBH
theorem are known. Here, there will be no K’s appearing in the linear combination
because of the commutation relation [Li, Lj] = εijkLk. Thus, the product is written
as

eφiLieθjLj = eαiLi (~α : a function of ~φ, ~θ), (1.146)

which is just another rotation.
Next, consider a boost eξiKi followed by another boost eξ

′
iKi :

eξ
′
iKieξjKj = eξ

′
iKi+ξjKj+

1
2

[ξ′iKi,ξjKj ] + ... . (1.147)

Again, the brackets can be removed by the commutation relations (1.103) reducing
the exponent to a linear combination of K’s and L’s. This time, there will be L’s
appearing through the relation [Ki, Kj] = −εijkLk which are in general not cancelled
among different terms. Thus, a boost followed by a boost is not in general another
boost; rather, it is a combination of boost and rotation:

eξ
′
iKieξjKj = eαiKi+βiLi (~α, ~β : functions of ~ξ, ~ξ′). (1.148)
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It is easy to show, however, that if two boosts are in the same direction, then the
product is also a boost.

Any combinations of boosts and rotations can then be written as

Λ = eξiKi+θiLi = e
1
2
aµνMµν

, (1.149)

where we have defined the anti-symmetric tensor aµν by

a0i
def≡ ξi, aij

def≡ θk (i, j, k : cyclic), aµν = −aνµ , (1.150)

and the factor 1/2 arises since terms with µ > ν as well as µ < ν are included in
the sum. The expression of an infinitesimal transformation (1.95) is nothing but this
expression in the limit of small aµν . Since we now know that any product of such
transformations can also be written as (1.149) by the CBH theorem, we see that the
set of Lorentz transformations connected to the identity is saturated by boosts and
rotations.

We have seen that the generators K’s and L’s and their commutation relations
(called the Lie algebra) play critical roles in understanding the Lorentz group. In
fact, generators and their commutation relations completely determine the structure
of the Lie group, as described briefly below.

Structure constants
When the commutators of generators of a Lie group are expressed as linear com-
binations of the generators themselves, the coefficients of the linear expressions are
called the structure constants of the Lie group. For example, the coeffients ±εijk in
(1.103) are the structure constants of the Lorentz group. We will now show that the
structure constants completely define the structure of a Lie group. To see this, we
have to define what we mean by ‘same structure’. Two sets F(3 f) and G(3 g) are
said to have the same structure if there is a mapping between F and G such that if
f1, f2 ∈ F and g1, g2 ∈ G are mapped to each other:

f1 ↔ g1, f2 ↔ g2 (1.151)

then, the products f1f2 and g1g1 are also mapped to each other by the same mapping:

f1f2 ↔ g1g2 ; (1.152)

namely, the mapping preserves the product rule.
Suppose the sets F and G are Lie groups with the same number of generators Fi

and Gi and that they have the same set of structure constants cijk

[Fi, Fj] = cijkFk, [Gi, Gj] = cijkGk . (1.153)
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Any element of F and G can be expressed in exponential form using the corresponding
generators and a set of real parameters. We define the mapping between F and G by
the same set of the real parameters:

f = eαiFi ↔ g = eαiGi . (1.154)

If f1 ↔ g1 and f2 ↔ g2, then they can be written as

f1 = eαiFi ↔ g1 = eαiGi (1.155)

f2 = eβiFi ↔ g2 = eβiGi , (1.156)

where αi and βi are certain sets of real parameters. Then the question is whether
the products f1f2 and g1g2 are mapped to each other by the same mapping. The
products f1f2 and g1g2 can be written using the CBH theorem as

f1f2 = eαiFieβjFj = eαiFi+βjFj+
1
2

[αiFi,βjFj ] + ... = eφiFi , (1.157)

g1g2 = eαiGieβjGj = eαiGi+βjGj+
1
2

[αiGi,βjGj ] + ... = eγiGi , (1.158)

The numbers φi and γi are obtained by removing the commutators using the commu-
tation relations (1.153), and thus completely determined by αi, βi and cijk; namely,
φi = γi, and thus f1f2 and g1g2 are mapped to each other by (1.154). Thus, if two Lie
groups have the same set of structure constants, then they have the same structure.


